UNIVERSITY OF CAPE COAST COLLEGE OF EDUCATION STUDIES SCHOOL OF EDUCATIONAL DEVELOPMENT AND OUTREACH INSTITUTE OF EDUCATION

FIVE-SEMESTER BACHELOR OF EDUCATION (SANDWICH) PROGRAMME LEVEL 400, END-OF-FIRST SEMESTER EXAMINATIONS, JUNE 2023

MARKING SCHEME

COURSE CODE:

CHE 310SW

COURSE TITLE:

PRACTICAL (PHYSICAL/INORGANIC)

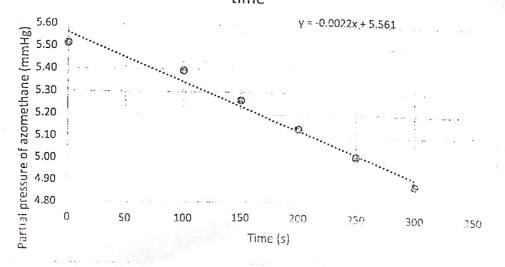
CHEMISTRY II

Answer ALL the questions. (60 MARKS)

1. The rate of decomposition of azomethane (C₂H₆N₂) was studied by monitoring the partial pressure of the reactant as a function of time.

 $C_2H_6N_2(g)$

 \longrightarrow $N_2(g) + C_2H_6(g)$


[50 marks]

Partial pressure of azomo (mmHg)	ethane Time (s)
248	0
220	100
193	150
170	200
150	250
132	300

a. Plot a first order graph for this data.

Answer

A graph of partial pressure of azomethane against time

- b. What is the molecularity of the reaction? Answer
 The reaction is unimolecular
- c. What is the rate constant for the decomposition of azomethane? Answer

 The rate constant, k, is the slope of the curve = 0.0022 s^{-1}
- d. What is the half-life for the decomposition of azomethane? Answer

 For a first order reaction, $t_{1/2} = \frac{0.693}{k} = \frac{0.693}{0.0022} = 312 \text{ s}$
- e. Determine the partial pressure for this reaction after 120 s of decomposition. Answer

From the integral first order reaction,

$$\ln P_t = -kt + \ln P_o$$

$$= -0.0022 \times 120 + 5.51 = 5.25$$

$$P_t = e^{5.25} = 190.6 \text{ mmHg}$$

f. What is the relationship between rate constant and rate of reaction?

Answer

The higher the rate constant, the faster the rate of reaction

2. Eriochrome black T is a known indicator used in the determination of water hardness. Show how this indicator changes colour from blue to wine at the end point of a complexometric titration.

[10 marks]

Answer

Eriochrome black T, which is originally blue in colour, forms a wine red complex when added to a sample containing calcium or magnesium according to the reaction.

$$HIn^{2-} + Ca^{2+}$$
 \longrightarrow $CaIn^{-} + H^{+}$. (1)
Blue Wine red

During the titration process, the Na₂EDTA is added from the burette and takes away all the Ca²⁺ and Mg²⁺ from the Eriochrome Black T. When the equivalent point is reached, when all the Ca²⁺ and Mg²⁺ have been complexed by the EDTA (H₂Y²⁻), the colour changes back to blue (the original colour of Eriochrome Black T) according to equation (2).

CaIn-
$$+ H_2Y^2$$
 \longrightarrow CaY²⁻ $+ H' + HIn$ (2)
Wine red Blue

Hel -> +++ cl-

JUNE 2023 CHE 208SW PHYSICAL CHEMISTRY II I HOUR 30 MINUTES

Candidate's Index Number	
@ Zegrye	
Signature: Tower.	

UNIVERSITY OF CAPE COAST COLLEGE OF EDUCATION STUDIES SCHOOL OF EDUCATIONAL DEVELOPMENT AND OUTREACH INSTITUTE OF EDUCATION

FIVE-SEMESTER BACHELOR OF EDUCATION (SANDWICH) PROGRAMME LEVEL 400, END-OF-FIRST SEMESTER EXAMINATIONS, JUNE 2023

21ST JUNE 2023

2

PHYSICAL CHEMISTRY II

2:30 PM - 4:00 PM

SECTION B (40 MARKS)

Attempt TWO questions from this Section.

- a. Calculate the pH of 0.06 M aniline $(C_6H_5NH_2)(a \text{ weak base})$ solution. (Given K_b $(C_6H_5NH_2) = 3.8 \times 10^{-10}$). Assume the auto ionization of water has negligible effect on the pH of the solution.
- b A solution is prepared by dissolving 2.0 g NaOH in 500 mL of distilled water. Calculate the pH of the solution.
- a. What is a buffer solution? Calculate the pH of a buffer system made up of 0.15 M $NH_3/0.35$ M NH_4Cl ($K_b = 1.8 \times 10^{-5}$)
 - b. Calculate the pOH of each of the following solutions:
 - i. 0.002 M HCl
 - ii. 0.042 M NaOH
 - iii. 2.4 x 10⁻⁴ M Ba(OH)₂
- a. The pH of a 0.060 M weak monoprotic acid is 3.44. Calculate the K_u of the acid.
 - by Use NH3 and its conjugate acid NH4" to derive the relationship between Ka and Ka

NH. + NH. + MH.