JUNE 2023 CHE 208SW PHYSICAL CHEMISTRY II 2 HOURS

Candidate's In	dex Number	
		4
Signature:		

UNIVERSITY OF CAPE COAST COLLEGE OF EDUCATION STUDIES SCHOOL OF EDUCATIONAL DEVELOPMENT AND OUTREACH INSTITUTE OF EDUCATION

FIVE-SEMESTER BACHELOR OF EDUCATION (SANDWICH) PROGRAMME LEVEL 400, END-OF-FIRST SEMESTER EXAMINATIONS, JUNE 2023

21ST JUNE 2023

PHYSICAL CHEMISTRY II

2:00 PM - 2:30 PM

This paper consists of two sections, A and B. Answer ALL the questions in Section A and TWO questions from Section B. Section A will be collected after the first 30 minutes.

> SECTION A (20 MARKS)

Answer ALL the questions in this Section.

For items 1 to 18, each stem is followed by four options lettered A to D. Read each item carefully and circle the letter of the correct or best option.

- What is the pH of a solution prepared by dissolving 0.32 g HCl in 100 mL of solution?
 - A. 2.4
 - B. 4.1
 - C. 5.4
 - D. 6.7
- 2. The relationship between K_b and pK_b of a weak base is that
 - A. $pK_b = logK_b$
 - B/ the higher the K_b , the lower the pK_b
 - C. the lower the K_b , the higher the pK_b
 - D. they are the same.
- What is the expression for the K_p of the following reaction?

$$(NH_4)_2Se(s)$$
 \longrightarrow $2 NH_3(g) + H_2Se(g)$

A
$$K_p = \frac{(P_{NH3})^2 P_{H2Se}}{P_{(NH4)2Se}}$$

B.
$$K_P = \frac{[NH_3]^2 \cdot [H2Se]}{[((NH4)2Se)]^2}$$

$$C K_P = (P_{NH_3})^2 \cdot P_{H_2Se}$$

$$D K_P = P_{NH_3}.P_{H_2Se}$$

The reaction for the decomposition of nitrosyl chloride is given as

2 NOCl(g) 2 NO(g) + Cl₂(g)

What will be the direction of equilibrium when the temperature is increased?

- A. Equal amount of both products and reactants will be formed.
- B. More NO and Cl2 will be formed.
- More NOCI will be formed.
- D. There will be no effect on the equilibrium constant.
- 5. What is the pH of a buffer solution prepared from 0.65 M NH₃(aq) and 0.25 M NH₄Cl(aq) (Given $K_b = 1.8 \times 10^{-5}$).
 - A. 3.52
 - **★B** 5.16
 - 8.84
 - D. 10.48
- The pH of rainwater collected from a certain town in the Greater Accra region was found to be 3.10. Calculate the OH+ ion concentration in the rainwater.
 - (A) 1.3 x 10⁻¹¹ M.
 - B. 5.3 x 10⁻⁵ M
 - C. $9.4 \times 10^{-3} M$
 - D. 2.3 x 10⁻² M
- 7. For the reaction

the amounts of the species were found to be; 0.225 mol N₂(g), 0.03 mol H₂(g) and 0.112 mol NH₃(g) in a 2.5 L container. Calculate Q_c for this equilibrium reaction.

- A. 2064.86
- (B.) 12905.53
- C. 1403.27
- D. 32351.99
- The K_a of HCOOH is 1.7 x 10⁻⁴. Calculate the pH of a methanoic acid solution containing or- Sleac SITXIVY
 - A: 2.4
 - (B) 3.8
 - C. 5.3
 - D. 7.5
- Given the following compounds and their respective acid dissociation constants, choose the

Compound	Ka
$H_2C_2O_4$	6.5 x 10 ⁻²
H ₂ SO ₃	1.3 x 10 ⁻²
H ₂ CO ₃	4.2×10^{-7}
H ₃ PO ₄	7.5×10^{-3}

- A. H₃PO₄
- B. H₂SO₃
- $C_{-}H_2CO_3$
- $D_{1}H_{2}C_{2}O_{4}$

10. What is the pOH of a solution if the $[OH^{-}] = 0.003 \text{ M}$?

- A. 11.5
- B. 8.4
- C. 7.0
- 2.5

211. Which of the following species of oxalic acid (C2H2O4) can act as both an acid and a base?

- (A) C₂H₂O₄ and HC₂O₄
- B. HC₂O₄ only
- C. $C_2O_4^{2-}$ only
- D. C₂H₂O₄ only

◆12. The equilibrium constant, Ke, for the formation of methanol from carbon monoxide and hydrogen gas is given as

$$CO(g) + 2 H_2(g) \longrightarrow CH_3OH(g)$$

$$K_C = 9.23 \times 10^{-3}$$

Calculate K_p for this process at 400 K.

- A. 1.03 x 10⁻³
- B. 9.23 x 10⁻³
- (C) 8.6×10^{-6}
- D. 2.41×10^{12}

. 13. A species which produces hydroxonium ions in solution is likely to be a(n)

- (A) Arrhenius acid.
- B. Bronsted base.
- C. Lewis' acid.
- D. Lewis' base.

14. Given the equilibrium constants for the following reactions ...

$$N_2(g) + 1/2 O_2(g)$$
 \longrightarrow $N_2O(g)$

$$K_1 = 5.4 \times 10^{-19}$$

$$N_2(g) + O_2(g)$$
 \longrightarrow 2 NO(g)

$$K_2 = 4.6 \times 10^{-31}$$

Determine the equilibrium constant for the reaction

$$N_2O(g) + 1/2 O_2(g)$$
 2 NO(g)

- A. 8.52×10^{-13}
- B. 5.0×10^{-25}
- C. 4.12 x 10⁻³⁰
- (D) 2.28 x 10⁻⁴⁹

15. The following equilibrium reaction was found to occur at 300°C

$$2 \text{ NO(g)} + O_2(g)$$
 2 NO_2(g)

If the concentration of the species are found to be [NO] = 0.45 M, $[O_2] = 0.61 \text{ M}$ and $[NO_2] =$ 1.5 M. calculate the equilibrium constant (Ke) for the reaction at 300°C

- 5.5×10^{-2}
- 1.8×10^{1}
- C. 4.5×10^2
- D. 9.3×10^3

16. For the reaction

$$NH_3(aq) + HF(aq) \longrightarrow NH_4^+(aq) + F^-(aq)$$

What is the conjugate base of NH₄ '(aq)?

- \bigcirc NH₃(aq)
- B. NH₄⁺(aq)
- C. F-(aq)
- D. None of the above
- 17. For the equilibrium reaction

$$2H_2(g) + O_2(g)$$
 $2H_2O(l)$

The equilibrium constant (K_p) was found to be 1.4 x 10^{83} at 298 K. What could account for this high K_p value?

- A. H₂O(l) is thermodynamically more stable than H₂(g) and O₂(g) at 298 K.
- B The K_p value increases with temperature.
- C. The rate of decomposition of H₂O(1) is highly favourable at 298 K.
- D. Water is more stable as a liquid than a gas at 298 K.
- 18. Identify the acid-base conjugate pair in the following species, H₂PO₄, NH₃, HPO₄², NH₄⁺
 - A. H₂PO₄ -NH₃
 - B. H₂PO₄²-HPO₄
 - C. HPO4- H2PO4
 - (D) NH₄+-NH₃

Items 19 and 20 are statements followed by True and False options. Read each statement carefully and indicate whether it is True or False by circling the letter of the correct option.

- 19. Sulfuric acid (H₂SO₄) is a strong diprotic acid. Its first acid dissociation constant is always greater than the second acid dissociation constant.
 - A. True
 - (B.) False
- 20. If the K_c of an equilibrium reaction is greater than one, it means the reaction is spontaneous in only one direction.
 - A. True
 - B.) False