JUNE 2023 PHY 301SW CLASSICAL MECHANICS 2 HOURS

Candidate's Index Number	
Signature:	Himp ants

UNIVERSITY OF CAPE COAST COLLEGE OF EDUCATION STUDIES SCHOOL OF EDUCATIONAL DEVELOPMENT AND OUTREACH INSTITUTE OF EDUCATION

FIVE-SEMESTER BACHELOR OF EDUCATION (SANDWICH) PROGRAMME LEVEL 350, END-OF-FIRST SEMESTER EXAMINATIONS, JUNE 2023

22ND JUNE 2023

CLASSICAL MECHANICS

7:00 AM - 9:00 AM

(100 MARKS)

Answer THREE questions in all; Question 1 (40 marks) and any TWO others (30 marks each).

1.

a. If
$$A = A_1 i - A_2 j + A_3 k$$
, show that $A = \sqrt{A_1 A_2} = \sqrt{A_1^2 + A_2^2 + \sqrt{A_3^2}}$. [8 marks]

- b. A = i + j, B = 2i 3j + k, C = 4j 3k. Find (i) $(A \times B) \times C$, (ii) $A \times (B \times C)$. [8marks]
- c. Two particles have position vectors given by $r_1 = 2t i + (3t^2 4t)k$ and $r_2 = (5t^2 12t + 4)i + t^3j 3tk$. Find (i) the relative velocity and (ii) the relative acceleration of the second F = particle with respect to the first at the instant where t = 2. [8marks]
- d. A constant force F acting on a particle of mass m changes the velocity from v_1 to v_2 n time τ (i) Prove that $F = m \left(\frac{v_2 v_1}{\tau} \right)$ (ii) Does the result in (i) holds if the force is variable? Explain. [8marks]
- 8. Show that the force field **F** defined by $\mathbf{F} = (y^2 z^3 6xz^2)\mathbf{i} + 2xyz^3\mathbf{j} + (3xy^2z^2 6x^2z)\mathbf{k}$ is a conservative force field. [8marks]
- 2. Suppose that the force acting on a system of particles are derivable from potential function V. Suppose that the system is conservative. Prove that if L = T V is the Lagrangian function then $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_{\alpha}} \right) \frac{\partial L}{\partial q_{\alpha}} = 0$ [30 marks]

- 3. If the Hamiltonian $\mathcal{H} = \sum p_{\alpha}\dot{q}_{\alpha} L$ where the summation extends from $\alpha = 1$ to n, is expressed as a function of the coordinates q_{α} and momenta p_{α} , prove the Hamiltonian equation $\dot{p}_{\alpha} = -\frac{\partial \mathcal{H}}{\partial q_{\alpha}}$, $\dot{q}_{\alpha} = \frac{\partial \mathcal{H}}{\partial p_{\alpha}}$ regardless of whether \mathcal{H} (i) does not or (b) does contain the variable time explicitly. [30 marks]
- 4. A particle moves in the xy plane under the influence of a central force depending only on its distance from the origin.
 - a. Set up the Hamiltonian for the system.
 - b. Write Hamilton's equation of motion.

[30marks]