APRIL, 2021 MAT 302SW ADVANCED CALCULUS II 1 HOUR 20 MINUTES

CANDIDATE'S INDEX NUMBER:
•
SIGNATURE:

UNIVERSITY OF CAPE COAST COLLEGE OF EDUCATION STUDIES SCHOOL OF EDUCATIONAL DEVELOPMENT AND OUTREACH INSTITUTE OF EDUCATION

FIVE-SEMESTER BACHELOR OF EDUCATION (SANDWICH) PROGRAMME SECOND YEAR, END-OF-THIRD SEMESTER EXAMINATION, APRIL, 2021

APRIL 30, 2021

ADVANCED CALCULUS II

9:40 AM - 11:00 AM

SECTION B Answer any TWO questions from this Section.

1. a. Find the derivative of $r(t) = at \cos(3t) i + b \sin^3 t j + c \cos^3 t k$.

₹ [8 marks]

- b. Evaluate $\int_C y^2 dx + x dy$, where C is the line segment from (-5, -3) to (0, 2). [12 marks]
- 2. a. If $f(x, y) = \sin x + e^{xy}$, then find

i. $\nabla f(x,y)$

ii. $\nabla f(0,1)$

[8 Marks]

b. Find the directional derivative $D_u f(x, y, z)$ for $f(x, y, z) = \sin(yz) + \ln x^2$ in the direction of the vector v = (1, 1, -1). Hence find $D_u f(1, 1, \pi)$.

[12 marks]

- 3. Evaluate $\int_C 2x \, ds$, where C consists of the arc C_1 of the parabola $y = x^2$ from (0,0) to (1,1) followed by the vertical line segment C_2 from (1,1) to (1,2). [20 marks]
- 4. a. Evaluate $\oint_C (3y e^{\sin x}) dx + (7x + \sqrt{y^4 + 1}) dy$, where the region D enclosed by C is given by $D = \{(r, \theta): 0 \le r \le 3, 0 \le \theta \le 2\pi\}$. [8 marks]
 - b. Evaluate $\iint_S y \, dS$, where S is the surface $z = x + y^2$, $0 \le x \le 1$, $0 \le y \le 2$. [12 marks]